carboxylato ligands and the bridging aqua ligands. The arrangement of the bridging ligands is also similar to that in the hemerythrin model complexes $\left[\left\{\mathrm{Fe}\left(\mathrm{pz}_{3}-\right.\right.\right.$ BH) $\left.\}_{2}(\mu-X)\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)_{2}\right]^{n}[\mathrm{pz}=$ pyrazolyl, $X=\mathrm{O}, R=\mathrm{H}$ or $\mathrm{CH}_{3}, n=0$; Armstrong, Spool, Papefthymiou, Frankel \& Lippard (1984)] where the $\mathrm{Fe}^{\text {III }}$ centres are bridged by an oxo and two carboxylato ligands and a protonated analogue ($X=\mathrm{OH}, R=\mathrm{CH}_{3}, n=1+$; Armstrong \& Lippard, 1984), which has a bridging hydroxo ligand.

The substitution of the two cyclooctadiene ligands in (II) by four $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands to give (I) results, as expected, in a marked increase in the Ru-ligand bond lengths trans to these phosphine ligands. In (II), the bridging trifluoroacetato ligands are slightly asymmetric with an average $\mathrm{Ru}-\mathrm{O}$ bond trans to a π olefin of $2.128(5) \AA$ and trans to a unidentate trifluoroacetato ligand of 2.088 (5) \AA, whereas in (I) the asymmetry is much greater with an average $\mathrm{Ru}-\mathrm{O}$ bond trans to a phosphine ligand of $2 \cdot 205$ (7) \AA and trans to a unidentate trifluoroacetato ligand of 2.090 (6) \AA. The $\mathrm{Ru}-\mathrm{O}$ (aqua) bond lengths (also trans to phosphine ligands) are also longer in complex (I) laverage 2.234 (5) \AA] compared with (II) [average $2 \cdot 146$ (5) \AA;; the aqua bridges are, however, symmetrical within experimental error in both complexes. Commensurate with the increase in some of the bridging $\mathrm{Ru}-\mathrm{O}$ bond lengths, the non-bonded $\mathrm{Ru} \cdots \mathrm{Ru}$ distance increases from 3.733 (1) in (II) to 3.881 (1) \AA in (I). It is interesting to note here that, despite the lengthening of the $\mathrm{Ru}-$ (bridging ligand) bonds in (I),
(II) is significantly more susceptible to breakdown of the $\left\{\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{C}_{2} \mathrm{~F}_{3}\right)_{2}\left(\mu-\mathrm{O}_{2} \mathrm{C}_{2} \mathrm{~F}_{3}\right)_{2}\left(\mu-\mathrm{OH}_{2}\right)\right\}$ core with attack by nucleophiles (e.g. phosphines, amines and isonitriles) than is (I). It can be speculated that this difference in reactivity may be attributable to a more strained ligand arrangement in the core of (II) than in (I). The distortion from ideal octahedral geometry for the core ligands in (I) is slightly less than in (II) with a mean absolute deviation from ideal geometry (90 or 180°) for the $\mathrm{O}-\mathrm{Ru}-\mathrm{O}$ angles of $3.4 \mathrm{in}(\mathrm{I})$ and 5.9° in (II).

Intensity data were collected at the National Institute for Materials Research, CSIR, Pretoria.

References

Ahlgren, M. \& Turpeinen, U. (1982). Acta Cryst. B38, 276-279.
Albers, M. O., Liles, D. C. Singleton, E. \& Jates, J. E. (1984). J. Organomet. Chem. 272, C62-C66.

Armstrong, W. H. \& Lippard, S. J. (1984). J. Am. Chem. Soc. 106, 4632-4633.
Armstrong, W. H., Spool, A., Papaefthymiou, G. C., Frankel, R. B. \& Lippard, S. J. (1984). J. Am. Chem. Soc. 106, 3653-3667.
Churchill, M. R. (1973). Inorg. Chem. 12, 1213-1214.
Cromer, O. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71-147. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Mehrotra, R. C. \& Bohra, R. (1983). Metal Carboxylates. London: Academic Press.
Sheldrick, G. M. (1978). In Computing in Crystallography, pp. 34-42. Delft Univ. Press.

Acta Cryst. (1986). C42, 49-51

Structure of ($\mathbf{2 , 2} \mathbf{2}^{\prime}$-Bipyridyl)tetrachloroplatinum(IV)

By Trevor W. Hambley*
Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001, Australia

(Received 4 June 1985; accepted 17 September 1985)

Abstract

PtCl}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right], M_{r}=493 \cdot 1\), monoclinic, Pn, $\quad a=8 \cdot 117$ (1), $\quad b=6.734$ (4), $\quad c=12.294$ (3) \AA, $\beta=104.15(2)^{\circ}, \quad V=651.6 \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.513 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=116.1 \mathrm{~cm}^{-1}$, $F(000)=456, T=294 \mathrm{~K}$, final $R=0.048$ for 1933 reflections. The Pt is six-coordinate in essentially octahedral geometry with $\mathrm{Pt}-\mathrm{Cl} 2.306$ (3) to

^[* Present address: Department of Inorganic Chemistry, University of Sydney, Sydney 2006, Australia.]

0108-2701/86/010049-03\$01.50
2.320 (3) \AA and $\mathrm{Pt}-\mathrm{N} 2.038$ (8) and 2.044 (9) \AA. The $\mathrm{Pt}-\mathrm{Cl}$ bond lengths reveal significant trans effects, the shorter bonds being trans to N .

Introduction. Oxidative addition reactions of planar four-coordinate $\mathrm{Pt}^{1 \mathrm{I}}$ complexes have been the subject of considerable interest (Buse, Keller \& Pritzkow, 1977; Gray, Gulliver, Levason \& Webster, 1983). Generally, these oxidations have been achieved by reaction with molecular halogens and in some cases coordinated © 1986 International Union of Crystallography
multihalide anions have resulted. This study reports the first structure of a mononuclear $\left[\mathrm{Pt}^{\mathrm{LV}}(\mathrm{bpy})(\right.$ tetrahalide)] complex. The structure of the $\mathrm{Pd}^{\mathrm{dv}}$ analogue has been reported recently (Gray et al., 1983).

Experimental. The title compound was obtained by zinc tetrachloride oxidation of an aqueous solution of $\left[\mathrm{Pt}^{11} \text { (diamine) }{ }^{(b p y)}\right]^{2+} \quad$ (bpy $=2,2^{\prime}$-bipyridyl) complex and formed as a precipitate. Single crystals were obtained by vapour diffusion of ethanol into a dimethyl sulfoxide solution of the complex. Data collected using Enraf-Nonius CAD-4 automatic diffractometer, graphite-monochromated Mo Ka radiation; 25 independent reflections with $10^{\circ} \leq 2 \theta \leq 41^{\circ}$ used for leastsquares determination of cell constants. Intensities of three reflections monitored, less than 1% decomposition. Structure solved by heavy-atom methods (Sheldrick, 1976); H atoms included at calculated sites ($\mathrm{C}-\mathrm{H} 0.97 \AA$). Full-matrix least-squares refinement based on F values converged with shifts $<0 \cdot 6 \sigma$. Max. excursions in final difference map, $+5.0 \mathrm{e} \AA^{-3}$, were located close to the Pt atom and the next-largest excursions were $\pm 1.0 \mathrm{e}^{\AA^{-3}}$. All calculations performed with SHELX76 (Sheldrick, 1976). Scattering factors (neutral Pt for Pt^{11}) and anomalous-dispersion terms taken from International Tables for X-ray Crystallography (1974). Data-collection and refinement parameters are collected in Table 1. Final positional parameters are listed in Table 2.*

Discussion. The structure of $\left[\mathrm{Pt}(\mathrm{bpy}) \mathrm{Cl}_{4}\right]$ consists of discrete neutral molecules, packed with no intermolecular contacts significantly shorter than the sum of the relevant van der Waals radii. The structure is isostructural with that of the recently reported equivalent $\mathrm{Pd}^{\text {IV }}$ complex (Gray et al., 1983). Bond lengths and selected angles are listed in Table 3 and an ORTEP plot (Johnson, 1965) of the complex molecule with atom labelling is shown in Fig. 1.
$\mathrm{Pt}^{1 \mathrm{~V}}-\mathrm{Cl}$ bond lengths trans to N are the same as those observed in the structure of $\left[\mathrm{Pt}^{11}(\mathrm{bpy}) \mathrm{Cl}_{2}\right]$ (Osborn \& Rogers, 1974) while the $\mathrm{Pt}-\mathrm{N}$ bond lengths are about $0.04 \AA$ longer than those observed in the same structure. Bond lengths to mutually trans Cl atoms are slightly longer than those trans to N . Similar trans influences have been observed in $\left[\mathrm{Pd}(\mathrm{bpy}) \mathrm{Cl}_{4} \mid\right.$ (Gray et al., 1983) and in $\left[\mathrm{Pt}^{1 \mathrm{~V}}(\mathrm{bpy}) \mathrm{I}_{4} \mid \mathrm{I}_{2}\right.$ (Buse et al., 1977). The $\mathrm{Pt}-\mathrm{N}$ bond lengths are the same as those observed in $\left|\mathrm{Pd}(\mathrm{bpy}) \mathrm{Cl}_{4}\right|$ (Gray et al., 1983). However, the $\mathrm{Pt}-\mathrm{Cl}$ distances are all $0.01-0.02 \AA$ longer than

[^1]
Table 1. Summary of data-collection and processing parameters

Crystal dimensions
Data-collection range
Scan width
Horizontal counter aperture

Scan type

Absorption correction:
number of sampling points
max. correction
min. correction
Range of $h k l$
Total data collected
Unique data after merging
$R_{\text {int }}$
Data with $I>2 \cdot 5 \sigma(I)$
Total variables
R
$w R$
Weighting constants

$$
\left[w=\mathrm{g} /\left(\sigma^{2} F_{o}+k F_{o}^{2}\right)\right]
$$

$0.10 \times 0 \cdot 10 \times 0.10 \mathrm{~mm}$
$2^{\circ}<2 \theta<60^{\circ}$
$(0.80+0 \cdot 35 \tan \theta)^{\circ}$
$(2 \cdot 00+0 \cdot 50 \tan \theta) \mathrm{mm}$
$\omega \cdot 1 \cdot 33 \theta$
1728
3.212
2.009
$-11 \rightarrow 10,0 \rightarrow 9,0 \rightarrow 17$
2157
2097
0.002
1933
155
0.048
0.059
$g=1 \cdot 0, k=0.0057$
$2^{\circ}<2 \theta<60^{\circ}$
$(0.80+0.35 \tan \theta)^{\circ}$
$(2.00+0.50 \tan \theta) \mathrm{mm}$
$\omega-1.33 \theta$
1728
3.212
$-11 \rightarrow 10,0 \rightarrow 9,0 \rightarrow 17$
2157
2097
0.002

1933
155
0.059
$g=1 \cdot 0, k=0.0057$

Table 2. Positional ($\times 10^{4}$) and equivalent isotropic thermal parameters

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right)\left(U_{11}+U_{22}+U_{33}+2 U_{13} \cos \beta\right)$				
	x	y	z	$B_{\mathrm{eq}}\left(\AA^{2}\right)$
Pt	7500	$6983(1)$	7500	$1 \cdot 62$
$\mathrm{Cl}(1)$	$5967(4)$	$8781(4)$	$5977(3)$	$2 \cdot 86$
$\mathrm{Cl}(2)$	$8959(4)$	$5187(5)$	$9043(3)$	$2 \cdot 72$
$\mathrm{Cl}(3)$	$9832(4)$	$9017(5)$	$7659(3)$	$2 \cdot 57$
$\mathrm{Cl}(4)$	$8540(4)$	$4961(5)$	$6308(3)$	$2 \cdot 94$
$\mathrm{~N}(1)$	$6437(10)$	$8647(13)$	$8534(7)$	$1 \cdot 48$
$\mathrm{~N}(2)$	$5392(11)$	$5288(14)$	$7447(8)$	$2 \cdot 02$
$\mathrm{C}(1)$	$7041(19)$	$10371(20)$	$9000(12)$	$2 \cdot 67$
$\mathrm{C}(2)$	$6222(22)$	$11383(20)$	$9701(12)$	$3 \cdot 01$
$\mathrm{C}(3)$	$4734(23)$	$10693(23)$	$9861(12)$	$3 \cdot 76$
$\mathrm{C}(4)$	$4106(19)$	$8914(22)$	$9373(13)$	$3 \cdot 37$
$\mathrm{C}(5)$	$4958(20)$	$7895(18)$	$8700(13)$	$2 \cdot 10$
$\mathrm{C}(6)$	$4383(14)$	$6015(16)$	$8104(10)$	$2 \cdot 10$
$\mathrm{C}(7)$	$2942(18)$	$5044(21)$	$8172(16)$	$3 \cdot 36$
$\mathrm{C}(8)$	$2489(37)$	$3278(21)$	$7488(38)$	$3 \cdot 00$
$\mathrm{C}(9)$	$3522(19)$	$2598(26)$	$6931(15)$	$2 \cdot 80$
$\mathrm{C}(10)$	$4978(16)$	$3631(19)$	$6874(11)$	$2 \cdot 44$

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Pt}-\mathrm{Cl}(1)$	$2 \cdot 320$ (3)	$\mathrm{Pt}-\mathrm{Cl}(2)$	2.316 (3)
$\mathrm{Pt}-\mathrm{Cl}(3)$	2.306 (3)	$\mathrm{Pt}-\mathrm{Cl}(4)$	2.307 (3)
$\mathrm{Pt}-\mathrm{N}(1)$	$2 \cdot 038$ (8)	$\mathrm{Pt}-\mathrm{N}(2)$	2.044 (9)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.334 (14)	$\mathrm{C}(5)-\mathrm{N}(1)$	1.363 (15)
$\mathrm{C}(6)-\mathrm{N}(2)$	1.374 (14)	$\mathrm{C}(10)-\mathrm{N}(2)$	1.319 (16)
$\mathrm{C}(2)-\mathrm{C}(1)$	1.389 (19)	$\mathrm{C}(3)-\mathrm{C}(2)$	1.352 (24)
$\mathrm{C}(4)-\mathrm{C}(3)$	1.380 (23)	$\mathrm{C}(5)-\mathrm{C}(4)$	1.384 (20)
$\mathrm{C}(6)-\mathrm{C}(5)$	1.480 (15)	C(7)-C(6)	1.360 (18)
$\mathrm{C}(8)-\mathrm{C}(7)$	1.451 (33)	C(9)-C(8)	1.291 (42)
$\mathrm{C}(10)-\mathrm{C}(9)$	1.387 (19)		
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	178.3 (1)	$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{Cl}(4)$	89.1 (1)
$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{Cl}(2)$	89.8 (1)	$\mathrm{Cl}(4)-\mathrm{Pt}-\mathrm{Cl}(1)$	90.1 (1)
$\mathrm{Cl}(4)-\mathrm{Pt}-\mathrm{Cl}(2)$	91.1 (1)	$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{Cl}(1)$	91.5 (1)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{N}(1)$	89.5 (3)	$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{N}(2)$	89.2 (3)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{N}(1)$	89.2 (3)	$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{N}(2)$	89.5 (3)
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(2)$	81.3 (4)	$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{N}(1)$	94.9 (2)
$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{N}(2)$	176.0 (3)	$\mathrm{Cl}(4)-\mathrm{Pt}-\mathrm{N}(1)$	$176 \cdot 1$ (2)
$\mathrm{Cl}(4)-\mathrm{Pt}-\mathrm{N}(2)$	94.8 (3)	$\mathrm{Pt}-\mathrm{N}(1)-\mathrm{C}(1)$	125.4 (8)
$\mathrm{P} 1-\mathrm{N}(1)-\mathrm{C}(5)$	114.3 (7)	$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(6)$	113.4 (7)
$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(10)$	$126 \cdot 2$ (8)		

Fig. 1. View of $\left[\mathrm{Pt}(\mathrm{bpy}) \mathrm{Cl}_{4}\right]$ with the atom-numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.
the equivalent $\mathrm{Pd}-\mathrm{Cl}$ distances though the same relative trans effects on these distances are observed in each structure.

Least-squares-planes' calculations show that the two rings of the bipyridyl group are essentially planar |all deviations less than 0.04 (2) \AA I, are coplanar, meeting at an angle of $2 \cdot 2(7)^{\circ}$, and that no atoms of the ligand deviate by more than 0.08 (2) \AA from the plane defined by $\mathrm{Pt}, \mathrm{Cl}(3), \mathrm{Cl}(4), \mathrm{N}(1)$ and $\mathrm{N}(2)$.

References

Buse, K. D., Keller, H. J. \& Pritzkow, H. (1977). Inorg. Chem. 16. 1072-1076.

Gray, L. R.. Gulliver, D. J., Levason, W. \& Webster, m. (1983). J. Chem. Soc. Dalton Trans. pp. 133-141.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Osborn, R. S. \& Rogers, D. (1974). J. Chem. Soc. Dalton Trans. pp. 1002-1004.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1986). C42, 51-53

A 1:1 Complex between 1,4,7,10,13,16-Hexaoxacyclooctadecane (18-Crown-6) and Mercury(II) Iodide

By David A. Pears and J. Fraser Stoddart
Department of Chemistry, The University, Sheffield S3 7HF, England
John Crosby
Organics Division, Imperial Chemical Industries PLC, Blackley, Manchester M9 3DA, England
and Billy L. Allwood and David J. Williams
Department of Chemistry, Imperial College, London SW7 2A Y, England

(Received 1 April 1985; accepted 10 September 1985)

Abstract

C}_{12} \mathrm{H}_{24} \mathrm{O}_{6} \cdot \mathrm{HgI}_{2}, \quad M_{r}=718 \cdot 7\), monoclinic, $C 2 / m, a=13.049$ (5), $b=11.241$ (3), $c=9.285$ (2) \AA, $\beta=134.89(3)^{\circ}, \quad V=965 \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.47 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Cu $K \alpha, \quad \lambda=1.54178 \AA, \quad \mu=410 \mathrm{~cm}^{-1}$, $F(000)=660$, room temperature, $R=0.036$ for 558 unique observed reflections with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$. The complex has crystallographic $2 / m$ symmetry and approximate molecular $D_{3 d}$ symmetry. The structure is composed of linear HgI_{2} entities inserted normal to the mean plane of the macrocycle with the Hg atom positioned at its centre. The coordination of the Hg atom is hexagonal bipyramidal with axial $\mathrm{Hg}-\mathrm{I}$ bond distances of 2.622 (1) \AA and a mean equatorial $\mathrm{Hg} \cdots \mathrm{O}$ distance of 2.86 (2) \AA. The accommodation of the large Hg atom within the macrocycle results in a significant

increase in the magnitude of the $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsional angles from the values normally observed in complexes of 18 -crown- 6 in which the ligands adopt the all-gauche conformation with pseudo $D_{3 d}$ symmetry.

Introduction. During our recent investigations (Allwood, Crosby, Pears, Stoddart \& Williams, 1984) on the complexation of sulfonium cations by 18 -crown-6 (18C6), we attempted to isolate a $2: 1$ crystalline complex between $\mathrm{MeSPh}_{2}^{+} . \mathrm{HgI}_{3}^{-}$and 18 C 6 from MeOH . In fact, the first crystals we isolated corresponded to a $1: 1$ complex between HgI_{2} and 18C6, indicating that $\mathrm{MeSPh}_{2}^{+} . \mathrm{HgI}_{3}^{-}$had disproportionated to $\mathrm{MeSPh}_{2}^{+} . \mathrm{I}^{-}$and HgI_{2} under the conditions of the crystal-growing experiment. In view of the
© 1986 International Union of Crystallography

[^1]: * Lists of structure amplitudes, anisotropic thermal parameters of non-hydrogen atoms, positional and thermal parameters of H atoms and details of least-squares-planes' calculations have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42476 (16 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

